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Abstract

Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is
studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial.
The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and
velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter
and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter
for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant
effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature
parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal
conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of
Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of
bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also
affect the fluid flow and heat transfer.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Convection in a cavity with differentially heated side walls
and insulated horizontal surfaces has been studied due to wide
range of applications in science, engineering and technology.
Natural convection of water around its density maximum is
complicated. Some reports on this can be found in litera-
ture [1–5]. The process of manufacturing materials in industrial
problems involve an electrically conducting fluid subjected to
a magnetic field [6–9]. The fluid properties like viscosity and
thermal conductivity are varying with temperature in nature.
The varying fluid properties are affected the fluid flow and heat
transfer within the enclosure [10–12]. Therefore, the consider-
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ation of influence of temperature dependent fluid properties in
enclosure in the presence of magnetic field is necessary with
large temperature differences. In most of the studies presented
in literature on natural convection in differentially heated cav-
ity has not been considered the above said effects together. The
present work aims to study the effects of temperature dependent
fluid properties on natural convection of water in the presence
of magnetic filed.

Natural convection of water near its density maximum in
rectangular enclosure is investigated by Tong [13]. Ishikawa et
al. [14] studied numerically the natural convection with density
inversion of water in a cavity. They made a correlation between
average Nusselt number and the parameters involved in the
study. Natural convection in a square cavity with variable vis-
cosity fluid is investigated by Madhi and Wedgworth [15]. The
effects of variable fluid properties on natural convection in a
square cavity for different temperature difference ratios is stud-
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Nomenclature

B magnetic field
cp specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
F electromagnetic force
g acceleration due to gravity . . . . . . . . . . . . . . . . m/s2

H height of the enclosure . . . . . . . . . . . . . . . . . . . . . . m
Ha Hartmann number, BoL

√
σe/μr

J electric current
k thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
k∗ dimensionless thermal conductivity
kr thermal conductivity at reference state
L length of the enclosure . . . . . . . . . . . . . . . . . . . . . . m
Nu local Nusselt number
Nu average Nusselt number
Pr Prandtl number, μr/(ρrαr)

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa

Ra Rayleigh number, gβ(θh−θc)
bL3

μrρrαr

T dimensionless temperature
Tm dimensionless density inversion parameter, θm−θr

θh−θc

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u,v velocity components . . . . . . . . . . . . . . . . . . . . . . m/s
U,V dimensionless velocity components

α thermal diffusivity
β volumetric coefficient of thermal expansion
ε reference temperature parameter
φ direction of the external magnetic field
μ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
μ∗ dimensionless viscosity
μr viscosity at reference state
ω vorticity
ψ stream function
Ψ dimensionless stream function
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σe electrical conductivity of the medium
τ dimensionless time
θ temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
θm density inversion parameter
Ω dimensionless vorticity

Subscripts

c cold wall
h hot wall
r reference state
ied by Zhong et al. [16]. The effect of temperature dependent
fluid properties on natural convection in a cavity is investigated
by Emery and Lee [17]. They found that though the changes
were made in flow and temperature fields there was essentially
no change in average Nusselt number. The effect of tempera-
ture dependent fluid properties of buoyancy driven convection
of air in a horizontal annulus is investigated by Shahraki [18].
He found that the variable viscosity had a strongest effect on
fluid velocity while the effects of variable thermal conductivity
were in temperature field and local Nusselt numbers.

Rudraiah et al. [6,7] investigated numerically the effect of
magnetic field on natural convection in a rectangular enclosure.
They found that the magnetic field decreases the rate of heat
transfer. The influence of a uniform external magnetic field on
natural convection in a square cavity is studied numerically by
Krakov and Nikiforov [8]. Buoyancy induced convection in a
rectangular cavity with a horizontal temperature gradient in a
strong, uniform magnetic field is investigated by Aleksandrova
and Molokov [9]. They found that the flow pattern differs sig-
nificantly for considering the magnetic field orientations. Ken-
jeres and Hanjalic [19] studied the effects of orientation and
distribution of an external magnetic field on heat transfer in
thermal convection of electrically conducting fluids. Hossain et
al. [20] numerically investigated buoyancy and thermocapillary
driven convection of an electrically conducting fluid in an en-
closure with internal heat generation. They found that increase
in the value of heat generation causes the development of more
cells inside the cavity.

A numerical study on unsteady two-dimensional natural
convection of an electrically conducting fluid in a laterally and
volumetrically heated square cavity under the influence of a
magnetic field is investigated by Sarris et al. [21]. They con-
cluded that the heat transfer is enhanced with increasing inter-
nal heat generation parameter, but no significant effect of the
magnetic field is observed due to the small range of the Hart-
mann numbers. Chenoweth and Paolucci [22] studied natural
convection of air in an enclosure with large horizontal tem-
perature difference. Vierendeels et al. [23] made a benchmark
solution for problem of natural convection in an enclosure with
large temperature difference. The aim of this paper is to study
the effect of temperature dependent fluid properties on MHD
convection of water near its density maximum in the differen-
tially heated enclosure.

2. Mathematical formulation

Consider a two-dimensional cavity of width L and height H

filled with pure water as shown in Fig. 1. The vertical isother-
mal side walls of the cavity are maintained at different tem-
peratures θh and θc, with θh > θc while the horizontal walls
of the cavity are adiabatic. The gravity acts in the downwards
direction. The velocity components u and v are taken in the
x and y directions respectively. It is also assumed that the
uniform magnetic field B = Bxex + Byey of constant magni-

tude Bo =
√

(B2
x + B2

y ) is applied, where ex and ey are unit

vectors in Cartesian coordinate system. The orientation of the
magnetic field form an angle φ with horizontal axis such that
tanφ = By/Bx . The electric current J and the electromagnetic
force F are defined by J = σe(V×B) and F = σe(V×B)×B re-
spectively. The following assumptions are taken for this study.
The density, thermal conductivity and viscosity of the water are
varying with temperature and other properties are constant. The
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Fig. 1. Physical configuration.

flow is two-dimensional, laminar and incompressible. The ra-
diation, viscous dissipation, induced electric current and Joule
heating are neglected. The density of the water varies non-
linearly as [2] ρ = ρm[1 −β|θ − θm|b], where ρm (= 999.972)

is the maximum density of water, β = 9.297173 × 10−6, and
b = 1.894816. The viscosity of the water is assumed to vary
with temperature as

μ(θ) = a + bθ + cθ2 + dθ3 (1)

where a (= 1.791084), b (= −6.144 × 10−2), c (= 1.451 ×
10−3) and d (= −1.6826 × 10−5) are the temperature coeffi-
cient of the viscosity of the water. The equation may be rewrit-
ten as
μ

μr

= 1 + A1εT + A2
[
(1 + εT )2 − 1

]

+ A3
[
(1 + εT )3 − 1

]
(2)

where ε = θh−θc

θr
, A1 = bθr

μr
, A2 = cθr

2

μr
, A3 = dθr

3

μr
. ε (�0.6)

is known as reference temperature parameter [22]. The thermal
conductivity of the water is assumed to vary with temperature
as

k(θ) = a1 + b1θ + c1θ
2 + d1θ

3 (3)

where a1 (= 0.561965), b1 (= 2.15346 × 10−3), c1 (=
−1.55141 × 10−5) and d1 (= 1.01689 × 10−7) are the tem-
perature coefficient of the thermal conductivity of the water.
The equation may be rewritten as

k

kr

= 1 + B1εT + B2
[
(1 + εT )2 − 1

]
+ B3

[
(1 + εT )3 − 1

]
(4)

where B1 = b1θr

kr
, B2 = c1θr

2

kr
, B3 = d1θr

3

kr
.

The governing equations for viscous incompressible electri-
cally conducting fluid with temperature dependent fluid proper-
ties are

∂u

∂x
+ ∂v

∂y
= 0 (5)

ρr

(
∂u + u

∂u + v
∂u

)
+ ∂P
∂t ∂x ∂y ∂x
= ∂

∂x

(
2μ

∂u

∂x

)
+ ∂

∂y

(
μ

∂u

∂y
+ μ

∂v

∂x

)

+ σeB
2
0 (v sinφ cosφ − u sin2 φ) (6)

ρr

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ ∂P

∂y

= ∂

∂x

(
μ

∂u

∂y
+ μ

∂v

∂x

)
+ ∂

∂y

(
2μ

∂v

∂y

)
− ρg

+ σeB
2
0 (u sinφ cosφ − v cos2 φ) (7)

From Eqs. (6) and (7), the vorticity equation takes the form

ρr

{
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

}

= μ

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
+ 2

∂μ

∂x

∂ω

∂x
+ 2

∂μ

∂y

∂ω

∂y
+ 4

∂2μ

∂x∂y

∂v

∂y

+
[
∂2μ

∂x2
− ∂2μ

∂y2

](
∂u

∂y
+ ∂v

∂x

)
+ ρmgβ

∂|θ − θm|b
∂x

+ σeB
2
0

[
sinφ cosφ

(
∂u

∂x
− ∂v

∂y

)

+
(

sin2 φ
∂u

∂y
− cos2 φ

∂v

∂x

)]
(8)

The energy equation is as follows

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= ∂

∂x

(
k

ρrcp

∂θ

∂x

)
+ ∂

∂y

(
k

ρrcp

∂θ

∂y

)
(9)

where θ is the temperature of the fluid, ρr is the density, p is
the pressure, μ is the viscosity, k is the thermal conductivity, g

is the gravity, p is the pressure, cp is the specific heat and t is
the time.

The initial and boundary conditions are

t = 0: u = v = 0, θ = θc, 0 � x � L, 0 � y � H

t > 0: u = v = 0,
∂θ

∂y
= 0, y = 0 &H

u = v = 0, θ = θh, x = 0

u = v = 0, θ = θc, x = L

The following non-dimensional variables are used

(X,Y ) = (x, y)

L
, (U,V ) = (u, v)

μr/Lρr

, τ = t

L2ρ/μr

μ∗ = μ

μr

, k∗ = k

kr

, Ψ = ψ

μr/ρr

Ω = ω

μr/ρrL2
, T = θ − θr

θh − θc

After nondimensionalization, the governing equations are

∂Ω

∂τ
+ U

∂Ω

∂X
+ V

∂Ω

∂Y

= μ∗∇2Ω + Ra

Pr

∂|T − Tm|b
∂X

+ 2
∂μ∗

∂X

∂Ω

∂X

+ 2
∂μ∗

∂Y

∂Ω

∂Y
+ 4

∂2μ∗

∂X∂Y

∂V

∂Y
+

[
∂2μ∗

∂X2
− ∂2μ∗

∂Y 2

]

×
(

∂U + ∂V
)

+ Ha2
[

sinφ cosφ

(
∂U − ∂V

)

∂Y ∂X ∂X ∂Y
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+
(

sin2 φ
∂U

∂Y
− cos2 φ

∂V

∂X

)]
(10)

∇2Ψ = −Ω (11)
∂T

∂τ
+ U

∂T

∂X
+ V

∂T

∂Y

= 1

Pr

[
∂

∂X

(
k∗ ∂T

∂x

)
+ ∂

∂Y

(
k∗ ∂T

∂Y

)]
(12)

U = ∂Ψ

∂Y
and V = −∂Ψ

∂X
(13)

The initial and boundary conditions in the dimensionless
form are

t = 0: U = V = Ψ = 0, Ω = T = 0

0 � X � 1, 0 � Y � 1

t > 0: U = V = Ψ = 0,
∂T

∂Y
= 0, Ω = −∂2Ψ

∂X2

X = 0 & 1

U = V = Ψ = 0, T = 1, Ω = −∂2Ψ

∂Y 2
, Y = 0

U = V = Ψ = 0, T = 0, Ω = −∂2Ψ

∂Y 2
, Y = 1

The non-dimensional parameters that appear in the equations

are Ha = BoL
√

σe/μr , Hartmann number, Tm = (θm−θr )
(θh−θc)

, den-

sity inversion parameter, Ra = gβ(θh−θc)
bL3

μrαr/ρr
, the Rayleigh num-

ber, Pr = μr

ρrαr
, the Prandtl number. The local Nusselt number

which accounts for the rate of heat transfer across the enclosure
is computed at hot wall and defined by Nu = −k∗ ∂T

∂Y
|X=0, and

the average Nusselt number is given by Nu = ∫ 1
0 Nu dY.

3. Numerical method

The non-dimensional equations subject to the boundary con-
ditions are solved by control volume method. The QUICK
scheme is used for the convection terms and central difference
scheme is used for diffusion terms. The solution domain con-
sists a number of grid points at which discretization equations
are applied. The uniform grid has been selected in both X and Y

directions. The grid size were tested from 21 × 21 to 121 × 121
for Ra = 106, Pr = 11.6 and constant fluid properties, i.e.,
(Tm = 0.0 and ε = 0.0). It is observed from the grid indepen-
dence test that a 81 × 81 uniform grid is enough to investigate
the problem. The time step is chosen to be uniform �τ = 10−4.
The resulting algebraic equations for energy and vorticity are
solved by iterative method whereas Successive Over Relaxation
(SOR) method is used to solve the equation for stream func-
tion. The relaxation parameter is taken to be 1.5. Thus, having
calculated the temperature and vorticity values at an advance
point in time τ = (n + 1)dτ , using their respective solution
given at τ = (n)dτ (n = 0 corresponds to the initial condition),
the stream function is solved for its solution at this advanced
time step. The resulting stream function values are then used
to determine the velocity components and the boundary values
of the vorticity from the relation Ω = Ψi,2−8Ψi,1

2h2 . Thus, the se-
quence beginning with the solution of the energy equation is
Table 1
Comparison of Nu results with previous works for square cavity with constant
fluid properties

Pr Ra Nu

Davis [24] Emery & Lee [17] Present

0.1 104 − 2.011 2.126
105 − 3.794 3.972

0.71 103 1.116 − 1.110
104 2.234 − 2.235
105 4.510 − 4.496
106 8.869 − 8.658

1.0 104 − 2.226 2.247
105 − 4.500 4.572

Table 2
Comparison of Nu results for different density inversion parameters with previ-
ous works for square cavity with constant fluid properties except density

Ra Tm Nu

Nansteel et al. [1] Tong [13] Present

103 0.5 1.0009 1.0007 0.9914
1.0 1.1190 1.1860 1.1122

104 0.5 1.076 1.0655 1.0689
1.0 2.278 2.2739 2.2443

Table 3
Comparison of Nu results with previous works for effect of magnetic force on
natural convection in a square cavity and Gr = 2 × 105

Ha Nu

Rudraiah et al. [6] Present

0 4.9198 5.0025
10 4.2053 4.8148
50 2.8442 2.8331

100 1.4317 1.4341

applied repeated until the desired accuracy of results are ob-
tained. The convergence criterion used for the field variables
φ (= T ,Ω, Ψ ) is |φ(n+1)(i,j)−φ(n)(i,j)

φ(n+1)(i,j)
| � 10−6. The validation

of present computational code is verified against the existing
results for natural convection in a square cavity filled with ei-
ther air [17,24] or water near its density maximum [1,13] and
magnetic force [6] and are shown in Tables 1–3. A in-house
computer code is developed and computations are performed
on Intel Xeon 3.6 GHz with 2.0 GB RAM workstations.

4. Results and discussion

Magnetohydrodynamic convection of cold water near its
density maximum with temperature dependent fluid properties
is investigated numerically by reference temperature method.
The Prandtl number Pr = 11.6 and reference temperature θr =
3.98 are taken for all cases. The results are discussed for vari-
able viscosity, variable thermal conductivity and both variable
viscosity and thermal conductivity of water for different den-
sity inversion parameter Tm, Rayleigh numbers Ra, reference
temperature parameter ε and Hartman number Ha.
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Fig. 2. Isotherms for different ε, Tm = 0.5, Ha = 25, φ = 0◦ and Ra = 106.
Fig. 2 shows the isotherms for variable viscosity, variable
thermal conductivity and both variable viscosity and thermal
conductivity of water for different reference temperature para-
meter ε, Ra = 106, Tm = 0.5, Ha = 25 and φ = 0◦. The density
maximum plane is at middle of the cavity for variable viscos-
ity and variable thermal conductivity cases when ε = 0, that is,
the density gradient is approximately symmetric with respect to
the vertical mid plane. The density maximum plane is between
hot wall and center of the cavity for both variable viscosity and
thermal conductivity case. There is a temperature stratification
in the vertical direction and a feeble thermal boundary layer is
established along the side walls. Increasing ε = 0.2 there is no
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Fig. 3. Streamlines for different ε, Tm = 0.5, Ha = 25, φ = 0◦ and Ra = 106.
change in temperature dependent viscosity case. The density
maximum plane moves from center of the cavity towards cold
wall for variable thermal conductivity case. The temperature
field is very much affect in the case of both variable viscosity
and thermal conductivity. The density maximum plane moves
from hot wall side to cold wall side. Further increasing ε the
same behaviour is observed for all temperature dependent fluid
properties.
The corresponding streamlines are depicted in Fig. 3. For all
values of ε there exists dual cell structure. The flow consists of
a symmetric counter rotating cell pattern with up flow of warm
and cold fluid near the vertical hot and cold walls and down
flow near the vertical mid plane (density maximum region) of
the cavity. But the dual cell structure is depending on the values
of ε and temperature dependent fluid properties. When ε = 0
the two cells are in same size for variable viscosity and both
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Fig. 4. Isotherms for different φ, Tm = 0.5, Ha = 25, ε = 0.2 and Ra = 106.
variable viscosity and variable thermal conductivity cases. But
the circulation rate of the cell is high in the case of variable vis-
cosity than the case both variable viscosity and variable thermal
conductivity. For temperature dependent thermal conductivity,
the cold cell is strengthened and hot cell is weakened. Increas-
ing ε = 0.2 there is no change in variable viscosity case. For the
case of variable thermal conductivity the size of the hot cell is
increased and cold cell is suppressed. For both variable viscos-
ity and thermal conductivity case flow pattern is also changed
significantly. The size of the hot cell grows and suppresses its
counter part. Further increasing ε there is no change for variable
viscosity and variable thermal conductivity cases. But both fluid
properties varying case, the clockwise rotation cell is increased
in its size and strengthens when increasing the reference tem-
perature parameter. Two convective cells are separated by the
Ψ = 0 plane at all times. It is clearly seen from the figures that
the flow field is affected by variable fluid properties.

The effect of direction of external magnetic field on tem-
perature distribution is depicted in Fig. 4. When φ = 45◦ the
density maximum plane coincides with the hot wall for vari-
able viscosity case and near to the hot wall for other cases. The
temperature stratification diminishes for temperature dependent
viscosity case. The density maximum plane is at middle of the
cavity for all cases of temperature dependent fluid properties
when φ = 90◦. The thermal boundary layer is formed near both
heated and cooled walls. Thus thin layers formed which are as-
sociated with high rates of heat transfer. But φ = 0◦ the density
maximum plane is at middle of the cavity for variable viscos-
ity and variable thermal conductivity cases and near to the cold
wall for both variable viscosity and thermal conductivity case.
Comparing these figures the temperature distribution is affected
very much when φ = 45◦. This is due to the retarding effect of
Lorentz force.
The streamlines for different direction of external magnetic
field is displayed in Fig. 5. The dual cell structure is affected
much when the direction of magnetic field is inclined than ver-
tical or horizontal. The clockwise cell shrinks in its size and
counter clockwise cell grows in its size, strengthen and occu-
pies the majority of the cavity for variable viscosity case. It can
be seen from the figure that as the direction of external magnetic
field changes from horizontal to inclined the flow rate of cells
decreases. For vertical magnetic field the flow has high circu-
lation rate and provide high heat transfer rate. For φ = 90◦ the
flow field is strengthened for the temperature dependent viscos-
ity case while the flow field is weakened for considering both
fluid properties. Fig. 6 shows the isotherms and streamlines for
φ = 0◦, Tm = 0.5, Ha = 100, ε = 0.2 and Ra = 106. The
isotherms become almost vertical lines, resembling the con-
duction type heat transfer due to high magnetic field strength.
The core region of streamlines is elongated in vertical direction.
There is no change in flow filed when changing the temperature
dependent fluid properties for high values of Hartmann number.

Fig. 7 shows the average Nusselt number for different val-
ues of direction of external magnetic field, φ. It is seen from
Fig. 7 that the heat transfer rate is minimum when φ = 0◦, that
is horizontal magnetic field. Heat transfer is enhanced when the
angle of external magnetic field is φ = 90◦. It is also observed
from the figure that the heat transfer rate is high for the tempera-
ture dependent viscosity case. Fig. 8 shows the effect of density
inversion parameter on average Nusselt number with φ = 0◦,
ε = 0.2 and Ra = 106. When increasing the Hartmann number
the heat transfer rate is decreased. It is also found that the av-
erage Nusselt number gets minimum in the density maximum
region, that is Tm = 0.5. For such a situation, the dual cell struc-
ture inhibits the direct convective transfer of energy from the
hot to the cold cell. This phenomenon results essentially from
the inversion of the fluid density at 4 ◦C and is one of its most
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Fig. 5. Streamlines for different φ, Tm = 0.5, Ha = 25, ε = 0.2 and Ra = 106.

Fig. 6. Isotherms and streamlines for φ = 0◦, Tm = 0.5, Ha = 100, ε = 0.2 and Ra = 106.
significant effects on the mechanism of heat transfer by con-
vection of water within a cavity. So heat transfer rate is reduced
in such a situation for all values of Rayleigh numbers. For suf-
ficiently large Hartmann number in density maximum region
the convection is completely suppressed as all temperature de-
pendent fluid properties. In such situation the heat transfer is
dominated by conduction.

The average Nusselt number for different reference tem-
perature parameters with Tm = 0.5, Ha = 25 and φ = 0◦ is
displayed in Fig. 9. It is found that increasing the Raleigh num-
ber increases the heat transfer rate for all values of ε. Also
observed that there is no significant effect on average Nus-
selt number when changing the reference temperature parame-
ter ε. But it is evidently seen from the figure that changing
the temperature-dependent properties produces the significant
effect on average heat transfer rate. The average heat trans-
fer rate considering temperature-dependent viscosity are higher
than considering temperature-dependent thermal conductivity
and both temperature-dependent viscosity and thermal conduc-
tivity for all values of Ra. Fig. 10 shows the average Nusselt
number for different Hartmann number. Increasing Hartmann
number decreased the heat transfer rate. In order to find the ef-
fect of direction of external magnetic field on heat transfer rate,
average Nusselt number is plotted as a function of φ and shown
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Fig. 7. Average Nusselt number for different φ, Tm = 0.5, Ha = 25, ε = 0.2.

Fig. 8. Average Nusselt number vs Tm = 0.5 for φ = 0◦ , ε = 0.2 and Ra = 106.

Fig. 9. Average Nusselt number for different ε, Ha = 25 and φ = 0◦ .

in Fig. 11. When φ = 90◦ provides better heat transfer rate that
other two angles of external magnetic field. Heat transfer rate is
enhanced when considering temperature-dependent viscosity.

Fig. 12 shows the non-dimensional temperature profiles at
middle of the cavity for different values of φ, Tm = 0.5, Ha =
25 and ε = 0.2. There is no sharp thermal boundary later
formed for all cases. Mid-height velocity profiles for different
Fig. 10. Average Nusselt number for different Ha, ε = 0.2, Tm = 0.5 and
φ = 0◦ .

Fig. 11. Average Nusselt number vs φ for ε = 0.2, Tm = 0.5, Ha = 25 and
Ra = 106.

Fig. 12. Temperature along hot wall for different φ, ε = 0.2, Tm = 0.5, Ha = 25
and Ra = 106.

φ, Tm = 0.5, Ha = 25, ε = 0.2 and Ra = 106 are displayed in
Fig. 13. The bidirectional velocity curves clearly show the dual
cell structure. The fluid particles are having higher velocity for
vertical magnetic field for all cases of temperature dependent
fluid properties. This results in the higher heat transfer rate.
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Fig. 13. Mid-height velocity profiles for different φ with ε = 0.2, Tm = 0.5, Ha = 25 and Ra = 106.
5. Conclusion

The effects of temperature dependent properties of water
near its density maximum in the presence of uniform mag-
netic field on fluid flow and heat transfer have been studied
for different combination of parameters. Though fluid flow
and temperature distributions make a sensitive difference on
changing the values of temperature difference parameters, there
is no change in average heat transfer rate. The average heat
transfer rate considering temperature-dependent viscosity are
higher than considering temperature-dependent thermal con-
ductivity and both temperature-dependent viscosity and ther-
mal conductivity for all values of Ra, Tm. The heat transfer
rate decreases with an increase of Hartmann number. The ve-
locity and temperature profiles were distorted when the ef-
fects of temperature-dependent properties were considered. It
is observed that the density inversion leaves strong effects on
fluid flow and heat transfer due to the formation of bi-cellular
structure. The formation of dual cell structure and strength
of each cell is always depends on the density inversion pa-
rameter and Rayleigh number. The heat transfer rate behaves
non-linearly with density inversion parameter. The heat trans-
fer rates are found to increase with increasing Rayleigh num-
ber.
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